Skip to main content

Period To Voltage Converter Circuit Diagram


This is the project of simple Period To Voltage Converter Circuit Diagram. The input signal drives ICD. Because ICD`s positive input (V+) is slightly offset to + 0.1 V, its steady state output will be around +13 V. This voltage is sent to ICC through D2, setting ICC`s output to +13 V. Therefore, point D is cut off by Dl, and CI is charged by the current source. 

Assuming the initial voltage on CI is zero, the maximum voltage (^Cinax) is given by: When the input goes from low to high, a narrow positive pulse is generated at point A. This pulse becomes -13 V at point B, which cuts off D2. ICC`s V+ voltage becomes zero. 

Period To Voltage Converter Circuit Diagram

Period To Voltage Converter Circuit Diagram

The charge on CI will be absorbed by ICC on in a short time. The time constant of C2 and R5 determines the discharge period— about 10 /is. ICB is a buffer whose gain is equal to (R& + R9)~Rg = lM5. ICD`s average voltage will be (1362f 1.545) + 2 = 1052/. RIO and C3 smooth the sawtooth waveform to a dc output.

Comments

Popular posts from this blog

OP AMP INTEGRATOR CALCULATOR

Enter the Input Voltage,Vin: Volts Enter the Frequency, f: Hertz Enter the Input Resistance, Rin: Ohms Enter the Value of Capacitor, C: Farads Output Voltage, Vout: Volts OP AMP based Integrator Tutorial and Design

Using the TLP250 Isolated MOSFET Driver Explanation and Example Circuits

I’ve already shown how to drive an N-channel MOSFET (or even an IGBT) in both high-side and low-side configurations in a multitude of ways. I’ve also explained the principles of driving the MOSFETs in these configurations. The dedicated drivers I’ve shown so far are the TC427 and IR2110. Some people have requested me to write up on MOSFET drive using the very popular TLP250. And I’ll explain that here. The TLP250, like any driver, has an input stage, an output stage and a power supply connection. What’s special about the TLP250 is that the TLP250 is an optically isolated driver, meaning that the input and output are “optically isolated”. The isolation is optical – the input stage is an LED and the receiving output stage is light sensitive (think “photodetector”). Before delving any further, let’s look at the pin configuration and the truth table. Fig. 1 - TLP250 Pin Configuration Fig. 2 - TLP250 Truth Table Fig. 1 clearly shows the input LED side and the receiving photodetector as well

MICROLAB A6331 – MICROLAB A6612 – HTS Circuit Diagram 4558 – TDA7377 – TC4053 – TDA2030A

Schematic: Microlab A6612 and Microlab A6331 Home Theater system .  Used ICs:  4558 – TDA7377 – TC4053 – TDA2030A A6331 - Circuit Diagram A6612 Circuit Diagram Click on the schematics to magnify