Skip to main content

Basic Low Power AM Transmitter Circuit Schematic Diagram


Description
This transmitter is basic but allows transmission of audio to an AM radio. It consists of an RF oscillator operating in the AM broadcast band, together with a modulator stage, which mixes the incoming audio and the RF. A signal appears on the output, which has an AM component that can be picked up on a nearby AM radio receiver.
Circuit Schematic Diagram

The transmitter consists of oscillator stage Q1 and modulator/buffer stage Q2. Q1 is biased via R1, R2, and R3. L1, C3, and C4 form the tank circuit with feedback network C3-C4 providing feedback to the emitter of Q1. RF voltage at the junction of C3 and L1 drives buffer/modulator stage Q2. Q2 is biased by base current produced by RF rectification in the base emitter junction of Q2. C6 is an RF and AF bypass capacitor. C9, C10, and L2 form the tank circuit for the collector of Q2. RF is taken from the junction of C9 and C10 and fed to a short-wire antenna. Audio is fed to modulator Q2 via C8 and isolation resistor R5 and mixes with the RF signal in the collector circuit of Q2, producing a signal that has sum and difference frequencies if the RF carrier and AF input  along with the carrier signal.
An AM signal appears at the collector of Q2. Audio with an RMS voltage equal to about 0.7 times the collector voltage of Q2 is needed for full modulation of the output. Because of the high level of audio needed, the modulation obtained from this circuit is somewhat limited with conventional audio sources because several volts of audio into a few hundred ohms is needed. The circuit demonstrates the principle of an AM transmitter, however, and with a suitable audio drive level, produces a well modulated AM signal.

Source - http://electroschematics.com/6821/basic-low-power-am-transmitter/

Comments

Popular posts from this blog

Using the TLP250 Isolated MOSFET Driver Explanation and Example Circuits

I’ve already shown how to drive an N-channel MOSFET (or even an IGBT) in both high-side and low-side configurations in a multitude of ways. I’ve also explained the principles of driving the MOSFETs in these configurations. The dedicated drivers I’ve shown so far are the TC427 and IR2110. Some people have requested me to write up on MOSFET drive using the very popular TLP250. And I’ll explain that here. The TLP250, like any driver, has an input stage, an output stage and a power supply connection. What’s special about the TLP250 is that the TLP250 is an optically isolated driver, meaning that the input and output are “optically isolated”. The isolation is optical – the input stage is an LED and the receiving output stage is light sensitive (think “photodetector”). Before delving any further, let’s look at the pin configuration and the truth table. Fig. 1 - TLP250 Pin Configuration Fig. 2 - TLP250 Truth Table Fig. 1 clearly shows the input LED side and the receiving photodetector as well...

OP AMP INTEGRATOR CALCULATOR

Enter the Input Voltage,Vin: Volts Enter the Frequency, f: Hertz Enter the Input Resistance, Rin: Ohms Enter the Value of Capacitor, C: Farads Output Voltage, Vout: Volts OP AMP based Integrator Tutorial and Design

Block diagram of AM transmitter and receiver with explanation

Block diagram of AM transmitter and receiver with explanation AM Transmitter : Transmitters that transmit AM signals are known as AM transmitters. These transmitters are used in medium wave (MW) and short wave (SW) frequency bands for AM broadcast. The MW band has frequencies between 550 KHz and 1650 KHz, and the SW band has frequencies ranging from 3 MHz to 30 MHz. The two types of AM transmitters that are used based on their transmitting powers are: ·          High Level ·          Low Level High level transmitters use high level modulation, and low level transmitters use low level modulation. The choice between the two modulation schemes depends on the transmitting power of the AM transmitter. In broadcast transmitters, where the transmitting power may be of the order of kilowatts, high level modulation is employed. In low power transmitters, where only a few watts of transmitting power are required , low...