Skip to main content

Simple 12v to 9v converter Circuit Diagram



This little circuit uses a LM317 variable voltage regulator to adjust the input voltage down to +9 volt, or whatever else you need. Just a solid basic circuit without bells and whistles.

You can do with a 10uF capacitor for C1 if your battery is close to this circuit. If it is located more than 3 feet increase the value to 100uF or above. Without a coolrib it can easily handle 500mA. If you need more, or the maximum current (1.5A), then a good coolrib is required.

Trimmer potent meter R3 will vary the output voltage. Ceramic capacitor C2 improves frequency/transient response. Can be omitted if not needed for your application. If you want extra protection in case the adjust pin is short circuited, add an extra 1N4001 diode over the input and the output. Cathode to input. But normally only used if the output is way over 25V.

R1 and R3 determine the output voltage. You can adapt them for your own needs and applications.
Use the following formula: (((R1+R3)/R2)+1)*1.25=V-out which comes to: (((560+1000)/220)+1)*1.25 = 10.11V (assuming V-in is 12V).

Or vice-versa: ((V-out/1.25)-1)*R2=R1+R3 which comes to: ((9/1.25)-1)*220=1364. For 1364, you can make R1=560 and R3=1K, which will give plenty of play.


After dozens of emails I have included the above circuit. The parts with the red 'X' are added and act to boost the amperage. The NTE393 transistor can handle 25A with a sufficient coolrib.

Other power transistors, such as the TIP2955, or similar can be used also. The power transistor is used to boost the extra needed current above the maximum allowable current provided via the regulator. Current up to 1500mA(1.5A) will flow through the regulator, anything above that makes the regulator conduct and adding the extra needed current to the output load.

It is no problem stacking power transistors for even more current. Both regulator and power transistor must be mounted on an adequate heatsink, and if you intend to use lots of amps a fan would be nice too.


Comments

Popular posts from this blog

OP AMP INTEGRATOR CALCULATOR

Enter the Input Voltage,Vin: Volts Enter the Frequency, f: Hertz Enter the Input Resistance, Rin: Ohms Enter the Value of Capacitor, C: Farads Output Voltage, Vout: Volts OP AMP based Integrator Tutorial and Design

Using the TLP250 Isolated MOSFET Driver Explanation and Example Circuits

I’ve already shown how to drive an N-channel MOSFET (or even an IGBT) in both high-side and low-side configurations in a multitude of ways. I’ve also explained the principles of driving the MOSFETs in these configurations. The dedicated drivers I’ve shown so far are the TC427 and IR2110. Some people have requested me to write up on MOSFET drive using the very popular TLP250. And I’ll explain that here. The TLP250, like any driver, has an input stage, an output stage and a power supply connection. What’s special about the TLP250 is that the TLP250 is an optically isolated driver, meaning that the input and output are “optically isolated”. The isolation is optical – the input stage is an LED and the receiving output stage is light sensitive (think “photodetector”). Before delving any further, let’s look at the pin configuration and the truth table. Fig. 1 - TLP250 Pin Configuration Fig. 2 - TLP250 Truth Table Fig. 1 clearly shows the input LED side and the receiving photodetector as well

Audio signal processing IC for 1 5 V headphone stereo

General Description: The AN7500FHQ is a single chip IC optimum for a 1.5 V headphone stereo system including pre-amp., power amp. and Dolby B type noise reduction circuit. Current consumption in a Dolby circuit off mode has been drastically reduced and an operating supply voltage has also been lowered to 0.98 V. Much fewer external components  have been realized due to an integration of audio signal processing system into a single chip circuitry in a small outline package and space saving mounting of a set. Circuit Diagram Audio signal processing IC for 1.5 V headphone stereo