Skip to main content

OP AMP PARAMETERS








op amp terminology



OPEN LOOP GAIN

It is the voltage gain of an OP AMP when NO Feedback is applied.

INPUT OFFSET VOLTAGE

It is the Voltage that must be applied between the input terminals of an OP AMP to make the output zero.

INPUT OFFSET CURRENT

It is the algebraic difference between the Current through Inverting and Non-Inverting input terminals.

INPUT BIAS CURRENT

Average of the currents that flow into the Inverting and Non-Inverting input terminals of the OP AMP.

INPUT CAPACITANCE

Capacitance that can be measured at either the Inverting or Non-Inverting terminal with the other terminal grounded.

OUTPUT OFFSET VOLTAGE

It is the DC Voltage present at the output terminals when both the input terminals are grounded.

SLEW RATE

It is the Maximum rate of change of output voltage with respect to time.

POWER SUPPLY REJECTION RATIO

Ratio of the change in input offset voltage due to the change in supply voltage producing it, keeping the other supply voltage constant. It is also called as Power supply sensitivity.

COMMON MODE REJECTION RATIO

Ratio of Differential voltage gain Ad to the common mode voltage gain Acm.

SUPPLY VOLTAGE REJECTION RATIO

Change in OP AMP's input offset voltage caused by the variations in supply voltage.


Comments

Popular posts from this blog

Using the TLP250 Isolated MOSFET Driver Explanation and Example Circuits

I’ve already shown how to drive an N-channel MOSFET (or even an IGBT) in both high-side and low-side configurations in a multitude of ways. I’ve also explained the principles of driving the MOSFETs in these configurations. The dedicated drivers I’ve shown so far are the TC427 and IR2110. Some people have requested me to write up on MOSFET drive using the very popular TLP250. And I’ll explain that here. The TLP250, like any driver, has an input stage, an output stage and a power supply connection. What’s special about the TLP250 is that the TLP250 is an optically isolated driver, meaning that the input and output are “optically isolated”. The isolation is optical – the input stage is an LED and the receiving output stage is light sensitive (think “photodetector”). Before delving any further, let’s look at the pin configuration and the truth table. Fig. 1 - TLP250 Pin Configuration Fig. 2 - TLP250 Truth Table Fig. 1 clearly shows the input LED side and the receiving photodetector as well...

OP AMP INTEGRATOR CALCULATOR

Enter the Input Voltage,Vin: Volts Enter the Frequency, f: Hertz Enter the Input Resistance, Rin: Ohms Enter the Value of Capacitor, C: Farads Output Voltage, Vout: Volts OP AMP based Integrator Tutorial and Design

Block diagram of AM transmitter and receiver with explanation

Block diagram of AM transmitter and receiver with explanation AM Transmitter : Transmitters that transmit AM signals are known as AM transmitters. These transmitters are used in medium wave (MW) and short wave (SW) frequency bands for AM broadcast. The MW band has frequencies between 550 KHz and 1650 KHz, and the SW band has frequencies ranging from 3 MHz to 30 MHz. The two types of AM transmitters that are used based on their transmitting powers are: ·          High Level ·          Low Level High level transmitters use high level modulation, and low level transmitters use low level modulation. The choice between the two modulation schemes depends on the transmitting power of the AM transmitter. In broadcast transmitters, where the transmitting power may be of the order of kilowatts, high level modulation is employed. In low power transmitters, where only a few watts of transmitting power are required , low...