Skip to main content

Car Battery Voltage Monitor Circuit Diagram


Simple Car Battery Voltage Monitor Circuit diagramThis circuit is used to monitor the battery voltage to display a dual-colored LED status of the battery to. If the LED “green”battery voltage exceeds 11.9 volts. If the yellow LED, battery voltage 11.9 to 11.5 volts. If the LED is “red” If the battery voltage below 11.5 volts. You can of course change the trigger points by the trimmer resistors and / or changing the value of the resistors in the divider.

A dual op amp is used as a comparator. The green LED on the board, until the voltage exceeds 11.5 volts. The red LED illuminates when the voltage falls below 11.9 volts to the circuit. Therefore, in the 11.9 to 11.5 volts, both LEDs are on, producing a slightly yellow color. When the voltage falls below 11.5 V, the green LED, and now only the red LED flashes to indicate low voltage.

Parts List
R1=1K2
R2-3-4=680R
R5=15K
R6=10K
R7-8-9-10=1K
IC1=LM324
D1=5V6 /0.5W Zener
D2-3-4-5=LED
RV1=10K trimmer

 Is recommended that multi-shaper for V1 and V2. Muti-trimmer makes it much easier to trigger points to make as a less expensive single-turn trimmer. The trimmer can be completely eliminated if you have access to a range of 1% resistors and has had calculated carefully. You would also want to provide more accurate reference voltage as the common 78L05 regulator.

Comments

Popular posts from this blog

OP AMP INTEGRATOR CALCULATOR

Enter the Input Voltage,Vin: Volts Enter the Frequency, f: Hertz Enter the Input Resistance, Rin: Ohms Enter the Value of Capacitor, C: Farads Output Voltage, Vout: Volts OP AMP based Integrator Tutorial and Design

Using the TLP250 Isolated MOSFET Driver Explanation and Example Circuits

I’ve already shown how to drive an N-channel MOSFET (or even an IGBT) in both high-side and low-side configurations in a multitude of ways. I’ve also explained the principles of driving the MOSFETs in these configurations. The dedicated drivers I’ve shown so far are the TC427 and IR2110. Some people have requested me to write up on MOSFET drive using the very popular TLP250. And I’ll explain that here. The TLP250, like any driver, has an input stage, an output stage and a power supply connection. What’s special about the TLP250 is that the TLP250 is an optically isolated driver, meaning that the input and output are “optically isolated”. The isolation is optical – the input stage is an LED and the receiving output stage is light sensitive (think “photodetector”). Before delving any further, let’s look at the pin configuration and the truth table. Fig. 1 - TLP250 Pin Configuration Fig. 2 - TLP250 Truth Table Fig. 1 clearly shows the input LED side and the receiving photodetector as well...

Block diagram of AM transmitter and receiver with explanation

Block diagram of AM transmitter and receiver with explanation AM Transmitter : Transmitters that transmit AM signals are known as AM transmitters. These transmitters are used in medium wave (MW) and short wave (SW) frequency bands for AM broadcast. The MW band has frequencies between 550 KHz and 1650 KHz, and the SW band has frequencies ranging from 3 MHz to 30 MHz. The two types of AM transmitters that are used based on their transmitting powers are: ·          High Level ·          Low Level High level transmitters use high level modulation, and low level transmitters use low level modulation. The choice between the two modulation schemes depends on the transmitting power of the AM transmitter. In broadcast transmitters, where the transmitting power may be of the order of kilowatts, high level modulation is employed. In low power transmitters, where only a few watts of transmitting power are required , low...