Skip to main content

10 Output LED Sequencer Circuit Diagram


This is a simple 10 Output LED Sequencer Circuit Diagram.This is a10 output LED sequencer. After the last LED is illuminated, the circuit is reset. This circuit is build around readily available, low cost

10 Output LED Sequencer Circuit Diagram

10 Output LED Sequencer Circuit Diagram
Component
a 555 and decade counter CD4O1 7. The timer IC NE555 is wired as an astable multivibrator that produces 6Hz clock at its output pin 3. The 4017 is a CMOS decade counter with 10 outputs. Inputs include a CLOCK (Pin 1 4), a RESET (Pin 15), and a CLOCK INHIBIT (Pin 13). The clock input connects to a Schmitt trigger for pulse shaping and allows slow clock rise and fall times (not needed in our case). 

The counter advances one output at the rising edge of the clock signal if the CLOCK INHIBIT line is low. A high RESET signal resets the counter to the zero output. The circuit may be configured for counts less than 10 by connecting RESET to an output pin (one after the desired count). Thus, a five stage sequencer can be made by connecting pin 15 to pin 1. A CARRY-OUT signal (pin 12) can be used to clock subsequent stages in a multi-device counting chain. 

The output from 1C2 pin 3 is connected to clock pin (pin 14) of the IC3 for sequencing operations. NPN transistors Q1- Q10 are used to increase the output current for the LEDs which is set by the common 150 ohm resistor. In the circuit, only one of the outputs is HIGH at any one time and the output advances by one count with every clock pulse. 

But the circuit above is poorly designed.
It does not need the voltage regulator as both chips can work up to 15v.
The 4017 can supply 10mA to a LED on a 12v supply so that none of the transistors are needed.
The circuit below shows the necessary components.
The secret to designing a circuit is to look at the final design and ask: "is this component necessary?"
Try removing a component and see if the circuit still works. Keep doing this with all the components. The circuit above was published in an Indian magazine with over 1,000,000 readers. The faults were obvious. How these faults passed an editorial committee is beyond me.  They are showing very poor design-leadership in allowing this oversight to be published. The faults are technical but are obvious to anyone who has constructed the circuit and experimented with it. Obviously the circuit has never been assembled with anyone with technical expertise.

10 Output LED Sequencer Circuit Diagram

10 Output LED Sequencer Circuit Diagram



Sourced By: Colin Mitchell

Comments

Popular posts from this blog

OP AMP INTEGRATOR CALCULATOR

Enter the Input Voltage,Vin: Volts Enter the Frequency, f: Hertz Enter the Input Resistance, Rin: Ohms Enter the Value of Capacitor, C: Farads Output Voltage, Vout: Volts OP AMP based Integrator Tutorial and Design

Using the TLP250 Isolated MOSFET Driver Explanation and Example Circuits

I’ve already shown how to drive an N-channel MOSFET (or even an IGBT) in both high-side and low-side configurations in a multitude of ways. I’ve also explained the principles of driving the MOSFETs in these configurations. The dedicated drivers I’ve shown so far are the TC427 and IR2110. Some people have requested me to write up on MOSFET drive using the very popular TLP250. And I’ll explain that here. The TLP250, like any driver, has an input stage, an output stage and a power supply connection. What’s special about the TLP250 is that the TLP250 is an optically isolated driver, meaning that the input and output are “optically isolated”. The isolation is optical – the input stage is an LED and the receiving output stage is light sensitive (think “photodetector”). Before delving any further, let’s look at the pin configuration and the truth table. Fig. 1 - TLP250 Pin Configuration Fig. 2 - TLP250 Truth Table Fig. 1 clearly shows the input LED side and the receiving photodetector as well...

Block diagram of AM transmitter and receiver with explanation

Block diagram of AM transmitter and receiver with explanation AM Transmitter : Transmitters that transmit AM signals are known as AM transmitters. These transmitters are used in medium wave (MW) and short wave (SW) frequency bands for AM broadcast. The MW band has frequencies between 550 KHz and 1650 KHz, and the SW band has frequencies ranging from 3 MHz to 30 MHz. The two types of AM transmitters that are used based on their transmitting powers are: ·          High Level ·          Low Level High level transmitters use high level modulation, and low level transmitters use low level modulation. The choice between the two modulation schemes depends on the transmitting power of the AM transmitter. In broadcast transmitters, where the transmitting power may be of the order of kilowatts, high level modulation is employed. In low power transmitters, where only a few watts of transmitting power are required , low...