Skip to main content

4 Digit Keypad Switch Circuit Diagram


Description
 This is a universal version of the Four-Digit Alarm Keypad. I've modified the design of the output section - to free up the relay contacts. This allows the circuit to operate as a general-purpose switch. I used a SPCO/SPDT relay - but you can use a multi-pole relay if it suits your application.
Do not use the "on-board" relay to switch mains voltage. The board's layout does not offer sufficient isolation between the relay contacts and the low-voltage components. If you want to switch mains voltage - mount a suitably rated relay somewhere safe - Away From The Board
 Circuit Diagram
 Notes:
The relay is energized by pressing a single key. Choose the key you want to use - and connect it to terminal "E". Choose the four keys you want to use to de-energize the relay - and connect them to "A B C & D". Wire the common to R1 and all the remaining keys to "F".

The Circuit is easy to use. When you press "E" - current through D2 & R9 turns Q6 on - and energizes the relay. The two transistors - Q5 & Q6 - form a "Complementary Latch". So - when you release the key - the relay will remain energized.

To de-energize the relay - you need to press keys "A B C & D" in the right order. When you do so - pin 10 of the IC goes high - and it turns Q4 on through R8. Q4 connects the base of Q6 to ground. This unlatches the complementary pair - and the relay drops out.

Any keys not wired to "A B C D & E" are connected to the base of Q3 by R7. Whenever one of these "Wrong" keys is pressed - Q3 takes pin 1 low and the code entry sequence fails. If "C" or "D" is pressed out of sequence - Q1 or Q2 will also take pin 1 low - with the same result. If you make a mistake while entering the code - simply start again.

The Keypad must be the kind with a common terminal and a separate connection for each key. On a 12-key pad - look for 13 terminals. The MATRIX TYPE with 7 or 8 terminals WILL NOT WORK. With a 12-key pad - over 10 000 different codes are available. If you need a more secure code - use a bigger keypad with more "Wrong" keys wired to "F". A 16-key pad gives over 40 000 different codes.

The Support Material for this circuit includes a step-by-step guide to the construction of the circuit board, a parts list, a detailed circuit description and more. 
 Board Layout
 Source - http://www.zen22142.zen.co.uk/Circuits/Switching/un4.html

Comments

Popular posts from this blog

OP AMP INTEGRATOR CALCULATOR

Enter the Input Voltage,Vin: Volts Enter the Frequency, f: Hertz Enter the Input Resistance, Rin: Ohms Enter the Value of Capacitor, C: Farads Output Voltage, Vout: Volts OP AMP based Integrator Tutorial and Design

Using the TLP250 Isolated MOSFET Driver Explanation and Example Circuits

I’ve already shown how to drive an N-channel MOSFET (or even an IGBT) in both high-side and low-side configurations in a multitude of ways. I’ve also explained the principles of driving the MOSFETs in these configurations. The dedicated drivers I’ve shown so far are the TC427 and IR2110. Some people have requested me to write up on MOSFET drive using the very popular TLP250. And I’ll explain that here. The TLP250, like any driver, has an input stage, an output stage and a power supply connection. What’s special about the TLP250 is that the TLP250 is an optically isolated driver, meaning that the input and output are “optically isolated”. The isolation is optical – the input stage is an LED and the receiving output stage is light sensitive (think “photodetector”). Before delving any further, let’s look at the pin configuration and the truth table. Fig. 1 - TLP250 Pin Configuration Fig. 2 - TLP250 Truth Table Fig. 1 clearly shows the input LED side and the receiving photodetector as well

Audio signal processing IC for 1 5 V headphone stereo

General Description: The AN7500FHQ is a single chip IC optimum for a 1.5 V headphone stereo system including pre-amp., power amp. and Dolby B type noise reduction circuit. Current consumption in a Dolby circuit off mode has been drastically reduced and an operating supply voltage has also been lowered to 0.98 V. Much fewer external components  have been realized due to an integration of audio signal processing system into a single chip circuitry in a small outline package and space saving mounting of a set. Circuit Diagram Audio signal processing IC for 1.5 V headphone stereo