Skip to main content

Super Digital Combination lock Circuit Diagram




The circuit above above makes use of the CMOS 4017 decade counter IC. Each depression of a switch steps the output through 0– 9. By coupling the output via an AND gate to the next IC, apredefined code has to be input to create the output. Each PBSswitch is debounced by tw1o gates of a CMOS4001 quad 2-input NORgate. This ensures a clean pulse to the input of each CMOS4017 counter. Only when the correct number of presses at PBS Awill allow PBS B to become active. This is similar for PBS C andPBS D. At IC4, PBS D must be pressed 7 times. Then PBS C is againpressed 7 times, stepping from output 1 to output 8. The ANDgate formed around CMOS4081 then goes high, lighting the LED. TheReset switch can be pressed at any time. Power on resetis provided by the 100n capacitor near the reset switch. Below isa picture of one that I made about 15 years ago:  

Super Digital Combination lock Circuit Diagram


Unfortunately, this board was part of a much larger project containing multiple power supplies. One day whilst working on another circuit , I slipped with a wire and splashed 24volts DConto this board. There was a small spark, and puff of smoke before all this chips were cooked! If anyone does consider building such a circuit, then my advice would be to stop and lookin your local electronic parts catalogue. There are now dedicated combination lock IC`s with combinations many time sgreater than this circuit. Incidentally the number of combinations offered here is 10 x 10 x 10 x 10 x 9 = 90,000.Check out Dean White`s Electronic Gadgets, on the Electronic Sites Alliance web ring, he also has a combination lock circuit.

Comments

Popular posts from this blog

Using the TLP250 Isolated MOSFET Driver Explanation and Example Circuits

I’ve already shown how to drive an N-channel MOSFET (or even an IGBT) in both high-side and low-side configurations in a multitude of ways. I’ve also explained the principles of driving the MOSFETs in these configurations. The dedicated drivers I’ve shown so far are the TC427 and IR2110. Some people have requested me to write up on MOSFET drive using the very popular TLP250. And I’ll explain that here. The TLP250, like any driver, has an input stage, an output stage and a power supply connection. What’s special about the TLP250 is that the TLP250 is an optically isolated driver, meaning that the input and output are “optically isolated”. The isolation is optical – the input stage is an LED and the receiving output stage is light sensitive (think “photodetector”). Before delving any further, let’s look at the pin configuration and the truth table. Fig. 1 - TLP250 Pin Configuration Fig. 2 - TLP250 Truth Table Fig. 1 clearly shows the input LED side and the receiving photodetector as well...

OP AMP INTEGRATOR CALCULATOR

Enter the Input Voltage,Vin: Volts Enter the Frequency, f: Hertz Enter the Input Resistance, Rin: Ohms Enter the Value of Capacitor, C: Farads Output Voltage, Vout: Volts OP AMP based Integrator Tutorial and Design

Block diagram of AM transmitter and receiver with explanation

Block diagram of AM transmitter and receiver with explanation AM Transmitter : Transmitters that transmit AM signals are known as AM transmitters. These transmitters are used in medium wave (MW) and short wave (SW) frequency bands for AM broadcast. The MW band has frequencies between 550 KHz and 1650 KHz, and the SW band has frequencies ranging from 3 MHz to 30 MHz. The two types of AM transmitters that are used based on their transmitting powers are: ·          High Level ·          Low Level High level transmitters use high level modulation, and low level transmitters use low level modulation. The choice between the two modulation schemes depends on the transmitting power of the AM transmitter. In broadcast transmitters, where the transmitting power may be of the order of kilowatts, high level modulation is employed. In low power transmitters, where only a few watts of transmitting power are required , low...