Skip to main content

Relay Step Up Circuit Diagram


Have you ever needed to power a 12-volt relay in a circuit but only had 6 or 9 volts available? This simple circuit will solve that problem. It allows 12-volt relays to be operated from 6 or 9 volts, or 24-volt relays from 12 volts. While most normal relays require the manufacturer-specified coil voltage to reliably pull the contacts together, once the contacts are together you only need about half that rated voltage to hold them in. This circuit works by using that principle to provide a short burst of twice the supply voltage to move the contacts and then applies the available 6 or 9 volts to the relay to lock the contacts in place.
With reference to Figure A., when the main supply is applied to the circuit the 220-µF capacitor, C1, charges quickly to +6 volts through resistor R3. The circuit is now awaiting voltage on the control input. When a control voltage (can be as little as 3 volts) is applied to the control input, transistor T1 switches on. The other transistor, a BC558, is also switched on. This allows connection of the relay coil to the main supply rail while T1 shorts the positive terminal of the 220-µF capacitor to ground. Now the negative terminal of the capacitor is at a potential of –6 volts. This is applied to the other side of the relay coil. The relay coil potential is then briefly 12 volts — enough to actuate the contact(s).
However, the coil voltage drops to the supply voltage fairly quickly. The period is determined by the R-C time constant of the relay coil resistance and the 220-µF capacitor. While this circuit is simple and works well in many situations, it has a few weaknesses in its current form. The relay may remain energized for as long as one second after the control input has fallen. Also, if the control input goes high before the capacitor has fully recharged, it may not have enough energy to control the relay reliably. Also, the voltage drop across the diode limits the voltage to about 10.8 volts.

The more complex version of the circuit shown in Figure B fixes these problems by using an extra transistor and diode. In this arrangement, the BC558 is now isolated from the recharge current of the capacitor. The new transistor provides fast charging for the capacitor. Charging is completed within the mechanical response time of the relay. When using these circuits it should be noted that the contact pressure of the relay contacts may be al little lower than with the nominal coil voltage. It is therefore advisable to keep contact currents well below the maximum specified value. 

Comments

Popular posts from this blog

OP AMP INTEGRATOR CALCULATOR

Enter the Input Voltage,Vin: Volts Enter the Frequency, f: Hertz Enter the Input Resistance, Rin: Ohms Enter the Value of Capacitor, C: Farads Output Voltage, Vout: Volts OP AMP based Integrator Tutorial and Design

Using the TLP250 Isolated MOSFET Driver Explanation and Example Circuits

I’ve already shown how to drive an N-channel MOSFET (or even an IGBT) in both high-side and low-side configurations in a multitude of ways. I’ve also explained the principles of driving the MOSFETs in these configurations. The dedicated drivers I’ve shown so far are the TC427 and IR2110. Some people have requested me to write up on MOSFET drive using the very popular TLP250. And I’ll explain that here. The TLP250, like any driver, has an input stage, an output stage and a power supply connection. What’s special about the TLP250 is that the TLP250 is an optically isolated driver, meaning that the input and output are “optically isolated”. The isolation is optical – the input stage is an LED and the receiving output stage is light sensitive (think “photodetector”). Before delving any further, let’s look at the pin configuration and the truth table. Fig. 1 - TLP250 Pin Configuration Fig. 2 - TLP250 Truth Table Fig. 1 clearly shows the input LED side and the receiving photodetector as well...

Audio signal processing IC for 1 5 V headphone stereo

General Description: The AN7500FHQ is a single chip IC optimum for a 1.5 V headphone stereo system including pre-amp., power amp. and Dolby B type noise reduction circuit. Current consumption in a Dolby circuit off mode has been drastically reduced and an operating supply voltage has also been lowered to 0.98 V. Much fewer external components  have been realized due to an integration of audio signal processing system into a single chip circuitry in a small outline package and space saving mounting of a set. Circuit Diagram Audio signal processing IC for 1.5 V headphone stereo