Skip to main content

A Simple Function Generator


Simple triangle-wave generators have a weakness in that the waveform of their output signal normally cannot be modified. The circuit presented here makes it possible to smoothly alter the waveform of a linearly rising and steeply trailing saw-tooth signal through a symmetrical triangle-wave to a slowly trailing, steeply rising linear sawtooth. The wanted waveform may be selected independently of the frequency, which can also be varied uniformly from 0.2 Hz to 8 kHz. At the same time, a rectangular signal with variable duty cycle (also independent of frequency) is available at the rectangular-signal output of the circuit.

Simple Function Generator Circuit diagram

A Simple Function Generator Circuit diagram

 
The circuit consists of integrator IC1b, whose output is applied to comparator IC1c. The output of the comparator is a rectangular signal The output of IC1b is raised by amplifier IC1d to a level that allows the full output voltage range of the operational amplifier to be used. Op amp IC1a provides a stable virtual earth, whose level is set to half the supply voltage with P1. The smooth setting of the frequency is made possible by feedback of part of the output of the comparator to the input of the integrator via P2. This preset is usually not provided in standard triangle-wave generators. Network D1-R1-D2-R2-P3 makes it possible to give integrator capacitor C3 different charging and discharge times.

This arrangement enables the output signal at A1 and the duty cycle of the rectangular wave signal at A2 to be varied. Varying the amplification factor with P5 has no effect on the frequency set with P2. The slope of the signal edges, the transient responses, and the output voltage range (rail-to-rail or with some voltage drop) depend on the type of op amp used. The TL084 used in the prototype offers a good compromise between price and meeting the wanted parameters. The circuit is best built on a small piece of prototyping board. The circuit draws a current of not more than 12 mA.

Brief parameters:
Provides triangle-wave, sawtooth or rectangular signal
Waveform variable independently of frequency (triangle wave and sawtooth)
Duty cycle of rectangular signal can be set independently of frequency
Applications:
Test and measurement
Pulse-width control
Summary of preset action:
P1 – sets virtual earth to a level equal to Ucc/2;
P2 – sets the frequency;
P3– sets the waveform;
P4 – sets the hysteresis of the comparator (frequency and amplitude of the triangle-wave signal)
P5 – sets the amplification of the triangle-wave and sawtooth signals.


Comments

Popular posts from this blog

Using the TLP250 Isolated MOSFET Driver Explanation and Example Circuits

I’ve already shown how to drive an N-channel MOSFET (or even an IGBT) in both high-side and low-side configurations in a multitude of ways. I’ve also explained the principles of driving the MOSFETs in these configurations. The dedicated drivers I’ve shown so far are the TC427 and IR2110. Some people have requested me to write up on MOSFET drive using the very popular TLP250. And I’ll explain that here. The TLP250, like any driver, has an input stage, an output stage and a power supply connection. What’s special about the TLP250 is that the TLP250 is an optically isolated driver, meaning that the input and output are “optically isolated”. The isolation is optical – the input stage is an LED and the receiving output stage is light sensitive (think “photodetector”). Before delving any further, let’s look at the pin configuration and the truth table. Fig. 1 - TLP250 Pin Configuration Fig. 2 - TLP250 Truth Table Fig. 1 clearly shows the input LED side and the receiving photodetector as well...

OP AMP INTEGRATOR CALCULATOR

Enter the Input Voltage,Vin: Volts Enter the Frequency, f: Hertz Enter the Input Resistance, Rin: Ohms Enter the Value of Capacitor, C: Farads Output Voltage, Vout: Volts OP AMP based Integrator Tutorial and Design

Block diagram of AM transmitter and receiver with explanation

Block diagram of AM transmitter and receiver with explanation AM Transmitter : Transmitters that transmit AM signals are known as AM transmitters. These transmitters are used in medium wave (MW) and short wave (SW) frequency bands for AM broadcast. The MW band has frequencies between 550 KHz and 1650 KHz, and the SW band has frequencies ranging from 3 MHz to 30 MHz. The two types of AM transmitters that are used based on their transmitting powers are: ·          High Level ·          Low Level High level transmitters use high level modulation, and low level transmitters use low level modulation. The choice between the two modulation schemes depends on the transmitting power of the AM transmitter. In broadcast transmitters, where the transmitting power may be of the order of kilowatts, high level modulation is employed. In low power transmitters, where only a few watts of transmitting power are required , low...